
F Prime: An Open-Source Framework for
Small-Scale Flight Software Systems
Robert Bocchino, Timothy Canham, Garth Watney,
Leonard Reder, and Jeffrey Levison

32nd Annual Small Satellite Conference
August 9, 2018
Utah State University

Copyright © 2018 California Institute of Technology
Government sponsorship acknowledged

j p l . n a s a . g o v

Introduction

• Developing flight software (FSW) is challenging
• Especially so for small spacecraft

– Small budgets
– Ambitious goals

• Challenges include
– Compressed schedules (especially test)
– Inadequate resources
– Poorly-specified interfaces
– Under-specified and changing requirements

August 9, 2018 SmallSat Conference 2

j p l . n a s a . g o v

Developing Flight Software (FSW) for Small Spacecraft
Introduction

• Options
1. Develop FSW from scratch
2. Adapt FSW from a previous mission
3. Use a multi-mission FSW framework

• We contend that option (3) is best
– Option (1) is too expensive and/or compromises quality
– Option (2) can work, but it is not ideal

• Unless FSW is designed for reuse, it is difficult to reuse
• Developers must re-engineer it for the new mission

August 9, 2018 SmallSat Conference 3

j p l . n a s a . g o v

Overview
The F Prime FSW Framework

• Free and open-source; developed at JPL
• Tailored to small-scale systems

– CubeSats, SmallSats, instruments

• Comprises several elements
1. A component-based architecture
2. A C++ framework providing core capabilities
3. Modeling tools for specifying models and generating code
4. A collection of ready-to-use components
5. Testing tools for unit and integration testing

• Runs on a wide range of hardware platforms
• Runs on several OSs (e.g., Linux, Mac OS, VxWorks)

August 9, 2018 SmallSat Conference 4

https://github.com/nasa/fprime

j p l . n a s a . g o v

Architecture
The F Prime FSW Framework

August 9, 2018 SmallSat Conference 5

• Based on components, ports, and topologies
– Component: A unit of FSW function (like a C++ class)
– Port: A point of connection between component instances
– Topology: A directed graph of instances and connections

• Component instances
– Communicate only through ports
– Have no compile-time dependencies on other components

• Port connections
– Are typed and statically specified
– May be synchronous or asynchronous

Provides structure to FSW applications
Enables automatic checking of correctness properties

Enhances reusability of FSW components

j p l . n a s a . g o v

C++ Framework
The F Prime FSW Framework

August 9, 2018 SmallSat Conference 6

F Prime auto-generates a
C++ base class from a
high-level specification

The developer fills in
handler functions with
application-specific code

Port 1

virtual port1Handler(…) = 0

port2Handler(…) {
…
invokePort3 (…)
…

}

Thread
Asynchronous

port1Handler(…) {
…

}

Developer-written

Auto-generated

Port 2 Synchronous

virtual port2Handler(…) = 0

Port 3

Implementation Class

Base Class

j p l . n a s a . g o v

Modeling and Code Generation (Components)
The F Prime FSW Framework

August 9, 2018 SmallSat Conference 7

you derive your class from Serializable and implement
its virtual methods.

OS Abstraction Layer: The F Prime framework
includes C++ classes that provide abstractions of com-
mon operating system (OS) features. These features
include threads, mutual exclusion locks, message
queues, files, timers, and clocks. The open-source
framework provides implementations of the OS layer
for Linux and Mac OS. The Linux implementation
works in Windows, on top of Cygwin. Internally to JPL
we have dev eloped an implementation for VxWorks. To
port F Prime to a new operating system S, you must
write implementations of these classes for S.

Optional Features: The F Prime framework has a num-
ber of optional features. If any of these features is not
needed, you can disable it by editing a configuration
file. Disabling unnecessary features saves memory
and/or CPU cycles during FSW execution. The optional
features include the following:

• Sending data on serialize ports (§ 2.1.2).

• Storing diagnostic information about component
instances, such as the names of the instances, at
runtime for debugging.

• Converting events emitted by FSW to human-
readable text so they can be printed on the console
or stored in a file.

2.3 Modeling and Code Generation

XML Specifications: F Prime defines an Extensible
Markup Language (XML) schema. Using the schema,
you can specify a model of a FSW application. The
model describes the application at a high level in terms
of the components, ports, and topologies of the F Prime
architecture (§ 2.1). The F Prime autocoder translates
the model into the C++ classes described in § 2.2.

Figures 4 and 5 show example XML files for specifying
F Prime ports and components. These examples are
adapted from the CmdDispatcher component in the F
Prime distribution (see § 2.4).

Figure 6 shows an example XML file for specifying a
topology. This example is adapted from the Ref appli-
cation, a FSW application included with the F Prime
distribution for tutorial purposes.

Ground Dictionaries: As part of an XML component
specification, you can define the following:

• Commands. You can specify commands that the
ground can send to instances of the component,
including the command name, the arguments to
the command, and the types of the arguments.

<interface name="Cmd" namespace="Fw">

<include_header>

Fw/Cmd/CmdArgBuffer.hpp

</include_header>

<comment>Command port</comment>

<args>

<arg name="opCode" type="FwOpcodeType">

<comment>Command Opcode</comment>

</arg>

<arg name="cmdSeq" type="U32">

<comment>Command Sequence</comment>

</arg>

<arg name="args"

type="CmdArgBuffer"

pass_by="reference">

<comment>

Buffer containing arguments

</comment>

</arg>

</args>

</interface>

Figure 4: XML Port Specification

<component name="CmdDispatcher"

kind="active"

namespace="Svc">

<import_port_type>

Fw/Cmd/CmdPortAi.xml

</import_port_type>

...

<comment>

A component for dispatching commands

</comment>

<ports>

<port name="compCmdSend"

data_type="Fw::Cmd"

kind="output"

max_number="$CmdDispatcherCommandPorts">

<comment>Command dispatch port</comment>

</port>

...

</ports>

...

</component>

Figure 5: XML Component Specification

• Telemetry Channels. You can specify the teleme-
try channels emitted by the component. A
telemetry channel has a unique ID and a value
type. A telemetry channel defines a set of teleme-
try points, where a point is a channel ID and a
value.

• Events. An ev ent is a report of FSW behavior, for
example a notification or a warning. Events have
arguments. For example, a FILE_UPLINKED

ev ent might have a single argument of string type
representing the file name.

• Parameters. A parameter is a constant value that
may be updated by command from the ground.
For example, control algorithms often have
parameters that need to be tuned or adjusted in

Bocchino 6 32nd Annual AIAA/USU
Conference on Small Satellites

XML SpecificationMagicDraw Model

C++ Base Class Ground Dictionaries

j p l . n a s a . g o v

Modeling and Code Generation (Topologies)
The F Prime FSW Framework

August 9, 2018 SmallSat Conference 8

XML Specification
<assembly name="Ref">

...

<import_component_type>

Svc/CmdDispatcher/CmdDispatcherComponentAi.xml

</import_component_type>

<import_component_type>

Svc/CmdSequencer/CmdSequencerComponentAi.xml

</import_component_type>

...

<instance namespace="Svc"

name="cmdDisp"

type="CmdDispatcher"

base_id="121"

base_id_window="20"/>

...

<instance namespace="Svc"

name="cmdSeq"

type="CmdSequencer"

base_id="541"

ase_id_window="23"/>

...

<connection name="Connection37">

<source component="cmdSeq"

port="cmdResponseOut"

type="CmdResponse"

num="0"/>

<target component="cmdDisp"

port="compCmdStat"

type="CmdResponse"

num="0"/>

</connection>

...

</assembly>

Figure 6: XML Topology Specification

flight.

The collection of these definitions for a single compo-
nent C forms the ground dictionary for C. The collec-
tion of definitions over all the component instances in a
system forms the ground dictionary of a system.

From the XML ground dictionaries, the F Prime tools
automatically generate Python code in a form that the F
Prime GSE (§ 2.5.2) can read. You can extend the F
Prime autocoders to translate the XML dictionaries to
the format used by the ground tools in your mission.

Graphical Modeling: As an alternative to writing XML
models, you can create and edit a formal model in the
System Modeling Language (SysML).2 SysML provides
a feature called a profile that lets you specialize it to an
application domain. In F Prime, a profile called the F
Prime Profile uses the concepts of generic components
and ports that are already embedded in SysML. It spe-
cializes these concepts to define the F Prime compo-
nents and ports described in § 2.1. See Figures 7 and 8.

To create a SysML model of an F Prime application,
you use the F Prime Profile inside a graphical modeling
tool called MagicDraw.3 An F Prime-specific Magic-
Draw plugin translates models expressed in the F Prime

Figure 7: The F Prime Profile for Port Types

Figure 8: The F Prime Profile for Component Types

Profile into the XML representation described above.
The resulting XML files are fully compatible with hand-
written XML, and they pass through the C++ and
ground dictionary autocoders in exactly the same way.
See Figure 9.

Figure 9: F Prime Modeling and Code Generation

Expressing an F Prime application as a formal model
has several advantages:

1. It captures the high-level design of the system in a
form that is easy to visualize.

2. It separates the high-level design from the imple-
mentation details.

3. It allows automated checking for violations of
architectural constraints. This checking can occur
before implementation begins, potentially saving
developer time.

Bocchino 7 32nd Annual AIAA/USU
Conference on Small Satellites

MagicDraw Model

MagicDraw UML, 1-1 /Users/watney/Development/Fprime/Ref/Top/REFApplication.mdxml C&DH Commanding Jul 18, 2018 4:13:49 PM

C&DH Commanding[Subsystem] ibd Ref []

cmdDisp : CommandDispatcher
{BaseID = "121",
Window = "20"}

compCmdStat : CmdResponse

compCmdSend : Cmd [10]

compCmdReg : CmdReg [10]

seqCmdBuff : Com [5]

CmdDisp : Cmd

CmdReg : CmdReg

CmdStatus : CmdResponse

seqCmdStatus : CmdResponse [5]

cmdSeq : CmdSequencer
{BaseID = "541",
Window = "23"}

cmdResponseIn : CmdResponse

comCmdOut : Com

cmdIn : Cmd

cmdRegOut : CmdReg

cmdResponseOut : CmdResponse

eventLogger : ActiveLogger
{BaseID = "421",
Window = "20"}

CmdDisp : Cmd

CmdReg : CmdReg

CmdStatus : CmdResponse

health : Health
{BaseID = "361",
Window = "20"}

CmdDisp : Cmd

CmdReg : CmdReg

CmdStatus : CmdResponse

fileDownlink : FileDownlink
{BaseID = "501",
Window = "20"}

cmdIn : Cmd

cmdRegOut : CmdReg

cmdResponseOut : CmdResponse

prmDb : PrmDb
{BaseID = "141",
Window = "20"}

CmdDisp : Cmd

CmdStatus : CmdResponse

CmdReg : CmdReg

0

0

0

0

Ground Dictionaries

Python code for
F Prime ground
data system

Mission-specific
ground data system
formats

j p l . n a s a . g o v

Reusable Components
The F Prime FSW Framework

August 9, 2018 SmallSat Conference 9

• F Prime comes with over 20 reusable components (and counting)
• The components provide many standard FSW behaviors

– Commanding
– Events and telemetry
– Ground interface
– File system
– Memory management
– Generic data storage
– Parameters (updatable constants)
– Time
– Health
– Assertions and fatal events

• Fully unit-tested and ready to go

j p l . n a s a . g o v

Unit Testing
The F Prime FSW Framework

August 9, 2018 SmallSat Conference 10

Port
Connections

Component
Base Class

XML
Component
Specification

Component
Implementation

Class

Component
Tester Class

Component
Tester Base

Class

Developer-written

Auto-generated

Provides a simple solution for testing F Prime components

F Prime auto-
generates Tester Base
with inverse ports to
component under test

j p l . n a s a . g o v

Ground Data System and Integration Testing
The F Prime FSW Framework

August 9, 2018 SmallSat Conference 11

F Prime
Deployment

Threaded TCP
Socket Server Python API

Graphical User
Interface (GUI)

Automated
Integration

Tests

Flight System Ground System

Provides a simple solution for testing F Prime deployments

j p l . n a s a . g o v

The Ground Data System GUI
The F Prime FSW Framework

August 9, 2018 SmallSat Conference 12

Commanding View Telemetry View

Strip Chart View

j p l . n a s a . g o v

Missions and Projects
Experience with F Prime

August 9, 2018 SmallSat Conference 13

• We have used F Prime on several space missions
– ISS RapidScat scatterometer (flew)
– ASTERIA CubeSat (flying now)
– Mars Helicopter (in development)
– Lunar Flashlight CubeSat (in development)
– Near Earth Asteroid (NEA) Scout CubeSat (in development)

• We have used F Prime for research and education
– JPL R&D project on autonomous FSW
– Collaborations with several universities

• F Prime can reduce the cost of developing FSW
– Facilitate sharing and reuse between projects
– Let developers focus on mission-specific code

j p l . n a s a . g o v

Making F Prime Better
Enhancements in Progress

August 9, 2018 SmallSat Conference 14

• Modeling and code generation
– New input language and visualizer for F Prime models
– It will be free and easier to use than MagicDraw/SysML

• Testing of F Prime components
– Tools for automatically picking test inputs
– Tools for generating tests from high-level specifications
– Integrated model checking with Spin

• Ground data system
– XTCE ground dictionaries
– Mobile user interface
– Improved server using ZeroMQ

j p l . n a s a . g o v

Conclusion

August 9, 2018 SmallSat Conference 15

• Developing FSW for small spacecraft is hard
• F Prime can help

– Architecture
– Direct code reuse
– Development ecosystem

• F Prime is a flight-proven technology
• Several enhancements are in progress

https://github.com/nasa/fprime

jp l .nasa.gov

